

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 690 (2005) 1588-1593

www.elsevier.com/locate/jorganchem

Development of novel and efficient synthesis of group 14 element (Ge and Sn) catenates by use of samarium (II) diiodide

Takushi Azemi, Yasuo Yokoyama¹, Kunio Mochida^{*}

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Received 17 June 2004; accepted 21 December 2004

Abstract

Group 14 element catenates such as di-, tri-, poly-germanes, and polystannanes are efficiently synthesized by use of the oneelectron reducing agent SmI_2 under mild homogeneous conditions in good yields. © 2005 Elsevier B.V. All rights reserved.

Keywords: Group 14 elements; Catenates; Samarium (II) diiodide

1. Introduction

Group 14 element (silicon, germanium, tin) backbone polymers have attracted considerable attention as a new class of soluble, film-forming polymers due to both their promising physical, chemical and optical properties and their potential technological utility [1–9]. Much attention is, therefore, being directed towards the development of synthetic routes. The most practical synthetic procedure for Group 14 element catenates is a Wurtztype polycondensation of Group 14 element dihalides with an alkali metal (Kipping method). These reactions are usually carried out under vigorous conditions and often lead to low yields of the polymers because of their heterogeneous nature. Moreover, such reactions, in which moisture-sensitive alkali metals are used at elevated temperature, can be hazardous. Therefore, much

E-mail address: kunio.mochida@gakushuin.ac.jp (K. Mochida).

milder, safer and more efficient methods are desirable. In this paper, we describe a new synthetic procedure for the formation of Group 14 element (Ge and Sn) catenates by use of samarium (II) diiodide (SmI₂). This reaction is particularly useful for the synthesis of polygermanes and polystannanes which are difficult to obtain in high yields by the Kipping method. SmI₂ is known to be a mild one-electron reducing agent and homogeneous nature, and it has been applied in a wide variety of carbon–carbon bond formation reactions [10].

2. Results and discussion

The formation of a germanium–germanium bond is first attempted by use of SmI_2 . Digermanes are generally synthesized by treatment of halogermanes with an alkali metal [11]. However, the germanium–germanium bond formed by reductive coupling is easily cleaved under reductive conditions. Organodigermanes were cleaved with alkali metal to give the corresponding germyl anion species [12]. Therefore, it is significant that a mild reducing agent is chosen as a promoter of reductive formation of a germanium–germanium bond for control over

^{*} Corresponding author. Tel.: +81 3 3986 0221; fax: +81 3 5992 1029.

¹ Present address: Department of Chemistry, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2004.12.032

cleavage of the formed bond. If the reductive potential of the reductant is too weak, the reductive coupling reaction of halogermanes can not proceed. SmI₂ has mild reduction potential (Sm²⁺ = Sm³⁺ + e⁻; -1.55 V, $M = M^+ + e^-$; -2.9 ~ -3.0 V, M = alkali metals) and its reaction is carried out in a homogeneous system [10]. These facts prompted us to investigate the formation of a germanium–germanium bond by reductive coupling of halogermanes.

The reactions of various halogermanes used as substrates and coupling reactions of them with 2 equiv. of SmI_2 in THF–HMPA mixed solvents at room temperature were carried out. After stirring, this reaction mixture was passed through a short column of silica gel and eluted with ether. This ether eluate was evaporated and purified by silica gel (hexane only) to give digermanes as major products. Products were identified by comparing their IR, NMR, GC–MS spectra, and retention times on GC with those of authentic samples. The results are summarized in Table 1.

$$2R_{3}GeX \xrightarrow{2 \text{ SmI}_{2}}_{\text{THF, HMPA, r.t.}} R_{3}GeGeR_{3} \quad R = alkyl, \text{ aryl}$$

Chlorotriethylgermane (Et₃GeCl) was treated with 2 equiv. of SmI₂ in THF/hexamethylphosphoric triamide (HMPA) at room temperature for 24 h to give hexaethyldigermane (Et₃GeGeEt₃) in 69% isolated yield (Entry 1). This reaction progressed without HMPA, but the reaction mixtures should be stirred for long reaction periods (>100 h) to give Et₃GeGeEt₃ in good yield. Therefore, HMPA was necessary for this reductive coupling of Et₃GeCl at the point of practical protocols. When more reactive bromotriethylgermane (Et₃GeBr) was used as a substrate, the reaction mixture was stirred at room temperature for 15 h to afford Et₃GeGeEt₃ in good yield (73%) (Entry 2). Sterically hindered digermanes could be synthesized by reductive coupling of halogermanes by use of SmI₂. Hexabutyl-

Table I			
The formation of (Ge–Ge Bond	by use c	of SmI ₂ ^a

Entry	Substrates	Time (h)	Yield ^b (%)
1	Et ₃ GeCl	24	69
2	Et ₃ GeBr	15	73
3	n-Bu ₃ GeCl	24	62
4	n-Bu ₃ GeBr	15	66
5	<i>i</i> -Pr ₃ GeCl	24	39
6	<i>i</i> -Pr ₃ GeBr	15	45
7	Ph ₂ MeGeCl	12	95
8	Ph ₂ MeGeBr	1	98
9 ^c	Et ₃ GeCl + Ph ₃ GeBr	1	96
10 ^d	<i>n</i> -Bu ₃ GeCl + Me ₃ GeBr	15	59

 a THF solution of $SmI_2~(0.1~mol/dm^3)$ and HMPA (8% V/V) were used.

^b Isolated yield.

^c $Et_3GeCl/Ph_3GeBr = 1/1$.

^d n-Bu₃GeBr/Me₃GeBr = 1/1.

and hexa-i-propyl-digermanes could be obtained in good yields, when the corresponding chlorogermanes or bromogermanes were treated with SmI₂ (Entries 3-6). In all cases, the reductive coupling of bromogermanes by use of SmI₂ gave efficiently the corresponding digermanes compared with those of chlorogermanes. Phenyl-substituted digermanes also could be given by this method under similar reductive conditions. Diphenylmethylhalogermanes were used as substrates to give the corresponding tetraphenyl-substituted digermanes in excellent yields (Entries 7 and 8). In contrast to alkyl-substituted halogermanes, phenylsubstituted halogermanes were easily reduced to afford the corresponding digermanes (Entries 1 vs. 7 and 2 vs. 8). These results led to synthesize asymmetric digermanes by the combination of chlorogermane and bromogermane. Anticipated reductive coupling of the corresponding halogermanes occurred and 1,1,1-triethyl-2,2,2-triphenyldigermane or 1,1,1-tributyl-2,2,2trimethyldigermane were obtained in good to excellent yields (Entries 9 and 10). These types of compounds could not be produced in good yields by treatment of halogermanes with an alkali metal.

As shown in Table 1 SmI_2 is a useful reagent for the formation of germanium–germanium bonds from halogermanes. This result suggested that other Group 14 element catenates could be synthesized by SmI_2 . Therefore, we tried to investigate applications of this method for various catenate compounds.

Organotrigermanes are mostly prepared by two methods: (1) the reaction of dihalogermanes and two equiv of halogermanes with alkali metals, and (2) by treatment of halogermanes and monohalodigermanes with alkali metals [11]. These procedures are multiplestep reactions and the corresponding trigermanes were produced in low yields. It is obviously unfavorable as a practical procedure for organotrigermanes. As mentioned above, SmI_2 was useful for the synthesis of Group 14 element catenates. Therefore, synthesis of various trigermanes and analogues using SmI_2 was examined.

Reaction conditions for the formation of trigermanes were optimized using Et_3GeCl and dibromophenylgermane (Ph₂GeBr₂) as model substrates. 1,1,1,3,3, 3-hexaethyl-2,2-diphenyltrigermane ((Et_3Ge)₂GePh₂) was identified by the IR, NMR, and GC–MS spectra, and retention times on GC with those of authentic samples.

$$2 \text{ Et}_{3}\text{GeCl} + \text{Ph}_{2}\text{GeBr}_{2} \xrightarrow{\text{excess SmI}_{2}} \text{Et}_{3}\text{Ge}^{-}\text{Ge}^{-}\text{GeEt}_{2}$$

$$THF, HMPA, r.t. \xrightarrow{Ph}_{I}$$

As shown in Table 2, THF solution of SmI_2 was added to the mixture of Et_3GeCl and Ph_2GeBr_2 in HMPA to give trigermane ($Et_3Ge)_2GePh_2$ in 63%

Synthesis of (Histop)2001 h2 by use of Shing					
Method	Additional reagent	Mother liquor	Yield ^b (%)		
A	SmI ₂ in THF	Et ₃ GeCl/Ph ₂ GeBr ₂ in HMPA	63		
В	Et ₃ GeCl	Ph2GeBr2/SmI2 in THF/HMPA	0		
С	Ph ₂ GeBr ₂	Et ₃ GeCl/SmI ₂ in THF/HMPA	38		
D	Et ₃ GeCl/Ph ₂ GeBr ₂ in THF	SmI ₂ in THF/HMPA	77		

Table 2 Synthesis of $(Et_3Ge)_2GePh_2$ by use of SmL_2^a

 a THF solution of SmI_2 (0.1 mol/dm³) and HMPA (8% V/V) were used.

^b Isolated yield.

isolated yield (method A). In contrast, a mixture of this reducing reagent and Ph_2GeBr_2 in THF/HMPA was added to Et₃GeCl. Many by-products were formed and the desired (Et₃Ge)₂GePh₂ could not obtained (method B). Furthermore, Ph_2GeBr_2 was added to the solution of Et₃GeCl and SmI₂. The trigermane was formed in low yield (method C). When the THF solution of Et₃GeCl and Ph_2GeBr_2 was slowly added to the THF/HMPA solution of SmI₂, the corresponding trigermane was given in the highest yield (method D).

Optimized reaction conditions of the formation of trigermanes were further examined by use of method D. An increasing in the concentration of SmI₂ relative to Et₃GeCl (from 5.0 to 10 equiv.) improved the yield of $(Et_3Ge)_2GePh_2$ (86%). Extending the dropping time from 30 min to 2 h at room temperature improved the yield of (Et₃Ge)₂GePh₂ (86–94%). Lowering the reaction temperature from room temperature to 0 °C resulted in lower yields of (Et₃Ge)₂GePh₂ (94–74%), while raising the temperature to 100 °C showed a slight decrease, affording (Et₃Ge)₂GePh₂ in 85% yield. A decreasing in the concentration of THF solution of Et₃GeCl and 2 equiv. of Ph₂GeBr₂ afforded (Et₃Ge)₂GePh₂ quantitatively. If concentrated solutions of substrates were added to SmI₂, (Et₃Ge)₂GePh₂ was produced together with a tetragermane, Et₃Ge(Ph₂Ge)₂GeEt₃, as a byproduct.

At the next stage, applications of this reaction for the preparation of various trigermanes and analogues by the reaction of trialkyl-substituted Group 14 element chlorides (R_3ECl , E = Ge, Sn; R = alkyl) with Ph_2GeBr_2 were investigated. All products were identified by their IR, NMR, and GC–MS spectra. These results are summarized in Table 3.

$$2 R_{3}EC1 + Ph_{2}GeBr_{2} \xrightarrow{10 \text{ equiv. } SmI_{2}} R_{3}E \xrightarrow[Ph]{Ph} R$$

Trigermanes having sterically hindered substituents such as *i*-propyl group could be synthesized by this method (Entry 2). Furthermore, Sn–Ge–Sn bond was formed by the use of SmI₂ (Entry 4). These types of compounds are important because they can be used as precursors for the formation of Sn–Ge bond containing polymers, and a few synthetic methods have been reported [13]. Therefore, SmI₂-promoted reactions are significant for efficient synthesis of these compounds in the field of polymers containing Group 14 elements.

In the synthesis of trigermanes, the reaction of Et_{3-} GeCl, Ph_2GeBr_2 , and SmI_2 gave tetragermane, Et_{3-} Ge(Ph_2Ge)₂GeEt₃, as a by-product. This result prompted us to apply SmI_2 to the formation of polymers containing Ge–Ge and Sn–Sn backbone bonds.

Polymerization of R_2ECl_2 (R = alkyl; E = Ge, Sn) by use of SmI₂ under various conditions was examined. Results of polymerization of R_2ECl_2 by use of 2 equiv. of SmI₂ are summarized in Table 4. First, we investigated polymerization of Bu₂GeCl₂ by treatment of SmI₂ in THF/HMPA at room temperature for 24 h. The

Table 3 Synthesis of trigermanes and analogues by use of SmI_2^a

Entry	R ₃ Ecl	Ph ₂ GeBr ₂	Product	Yield ^b (%)	
1	Me ₃ GeCl	Ph ₂ GeBr ₂	(Me ₃ Ge) ₂ GePh ₂	87	
2	<i>i</i> -Pr ₃ GeCl	Ph ₂ GeBr ₂	(<i>i</i> -Pr ₃ Ge) ₂ GePh ₂	30	
3	Et ₃ SnCl	Ph ₂ GeBr ₂	$(Et_3Sn)_2GePh_2$	39	

 a THF solution of SmI_2 (0.1 mol/dm $^3)$ and HMPA (8%V/V) were used.

^b Isolated yield.

Table 4 Polymerization of R_2ECl_2 by use of SmI_2^a

Entry	Е	R	Temperature (°C)	Time (h)	λ_{\max} (nm)	$M_{ m w}{}^{ m a}$	$M_{\rm n}{}^{\rm a}$	$M_{\rm w}/M_{\rm n}$	Yield ^b (%)
1	Ge	Me	reflux	1	327	4200	3700	1.14	9
2	Ge	Et	rt	24	289	2380	2030	1.17	19
3	Ge	Et	reflux	1	325	4890	4330	1.13	25
4	Sn	Me	rt	24	285	1120	750	1.49	19
5	Sn	Et	rt	24	368	4820	3980	1.21	74
6	Sn	Et	reflux	5	367	4100	3570	1.15	76
7	Sn	Bu	rt	65	289	2100	2030	1.04	17
8	Sn	Hex	rt	65	305	2770	2340	1.18	6

^a Determined by GPC based on polystyrene standard.

^b Isolated yield.

poly(diethylgermane)s, $(Et_2Ge)_n$, produced using SmI₂ had a narrow molecular weight distribution, but relatively low in molecular weight $(M_w = 2380, M_w/M_n = 1.17, Entry 2)$. Raising the reaction temperature from 23 to 65 °C resulted in higher molecular weight of $(Et_2Ge)_n$ with a narrow M_w/M_n and higher $(M_w = 4890, M_w/M_n = 1.13, Entry 3)$. The yields of $(Et_2-Ge)_n$ were also increased (19-25%). The $(Et_2Ge)_n$ prepared by Wurtz-type coupling of dichlorogermanes with sodium metal in dispersion at elevated temperature showed a distinctly bimodal broad M_w/M_n and molecular weight in excess of about $(3-4) \times 10^5$ were obtained [7.8.9f]. Therefore, polymerization of dichlorogermanes using SmI₂ is much milder, safer, and more efficient methods.

Polymerization of Et₂SnCl₂ by treatment of SmI₂ in THF/HMPA at room temperature for 24 h and reflux temperature for 1 h was examined (Entries 5, 6). The poly(diethylstannane)s, $(Et_2Sn)_n$, showed a narrow molecular weight distribution $(M_w/M_n = 1.15 - 1.21)$ and molecular weights in $(4.1-4.9) \times 10^3$ were obtained. Raising the reaction temperature from 23 to 65 °C scarcely improved the molecular weight of $(Et_2Sn)_n$. Polymerization of other dichlorostannanes by using SmI₂ in THF/HMPA at room temperature were also examined (Entries 4, 7, 8). Polystannanes were difficult to synthesize in good yields by the Kipping method [13]. The tin-tin bond formed by reductive coupling is easily cleaved under reductive conditions due to its weak bond strength. This method by using SmI_2 can be applied for the formation of various polystannanes under mild conditions.

3. Conclusion

In this paper, we have described the synthesis of useful various Group 14 element catenates, such as digermanes, trigermanes (and analogues), polygermanes, and polystannanes by treatment of Group 14 element halides with SmI_2 which is well-known as a mild one-electron reducing reagent under homogeneous conditions. Particularly, syntheses of asymmetric digermane, trigermane analogues having Sn–Ge–Sn bonds, and polystannanes are very important in the field of Group 14 elements because they have so far been difficult to be formed by practical methods. We believe that this convenient method would be generally applicable to a wide range of Group 14 element catenates and related compounds.

4. Experimental

¹H- and ¹³C NMR spectra were recorded in CDCl₃ with tetramethysilane (TMS) as an internal standard on Varian Unity Inova-400. GC–MS were measured with JEOL JMS-DX 303 mass spectrometer. The UV and UV–Vis spectra were recorded with a Shimadzu UV 2200 spectrometer. IR spectra were recorded on Shimadzu FT IR 4200 spectrometer. GPC was performed with JAI LC-908 and Jasco UVDEC-100-IV. Gas chromatographic analyses were performed with Shimadzu GC-8A equipped with 1 m 20% SE30. Column chromatography was performed with silica gel (Wako Pure Chemical Industries, Ltd., Wakogel C-300). Thin-layer chromatography was performed on 0.25 mm E. Merck silica gel plates (60F-254).

4.1. Materials

Sodium metal, lithium metal, magnesium and samarium metal were commercially available products. Diethylether and THF were distilled from sodium benzophenone ketyl under nitrogen before use. Dibutylether was dried over sodium wire and distilled before use. HMPA was dried over calcium hydride and purified by distillation under argon atmosphere. MeOH and toluene were purified by distillation prior to use. All solvents of column chromatography and the other commercial reagents were used without purification. Compounds Et_3GeC1 [14], Et_3GeBr [14], *i*-Pr₃GeC1 [15], *i*-Pr₃GeBr [15], *n*-Bu₃GeC1 [16], *n*-Bu₃GeBr [16], Ph₂MeGeC1 [17], Ph₂MeGeBr [17], Ph₃GeBr [18], Me₃GeBr [19], Ph₂GeBr₂ [20], (Et₃Ge)₂ [21], (*n*-Bu₃Ge)₂ [21], (*i*-Pr₃Ge)₂ [22], (Ph₂MeGe)₂ [23], Me₃GeGeBu₃ [21], Et₃GeGePh₃ [24], Me₂GeCl₂ [25], Et₂GeCl₂ [26], Me₂SnCl₂ [27], Et₂SnCl₂ [28], Bu₂SnCl₂ [29], Hex₂SnCl₂ [30], (Me₃Ge)₂GePh₂ [31], (Et₃Sn)₂GePh₂ [32], (Et₂Ge)_n [9f], and (Et₂Sn)_n [13] were prepared in accordance with reported procedures. THF solution of SmI₂ (0.1 mol/dm³) was prepared according to the literature [33]. All reactions were carried out under argon or nitrogen atmosphere.

4.2. Preparation of organodigermanes

As a representative example, the preparation of hexaethyldigermane ($(Et_3Ge)_2$) is described. A THF solution of SmI₂ (3.0 mL, 0.30 mmol) was added to an HMPA (0.24 mL) solution of Et₃GeBr (36.0 mg, 0.15 mmol). After stirring for 15 h at room temperature, this reaction mixture was passed through a short column of silica gel and eluted with ether. This ether eluate was evaporated and purified by silica gel (hexane only) to give compound Et₃GeGeEt₃ (17.5 mg, 73%). This digermane was identified by comparison with an authentic compound (GC–MS and ¹H NMR) which was described in the literature [22].

4.3. Preparation of trigermanes and analogues

As a representative example, the preparation of 1,1,1,3,3,3-hexaethyl-2,2-diphenyltrigermane ((Et₃Ge)₂-GePh₂) is described. A THF solution (40 mL) of Et₃-GeCl (25.7 mg, 0.13 mmol) and Ph₂GeBr₂ (23.3 mg, 0.06 mmol) was added dropwise to a THF-HMPA (12:1) solution of SmI_2 (6.0 mL, 0.60 mmol) for 2 h at room temperature. After being stirred for 1 h, the reaction mixture was passed through a short column of silica gel and eluted with ether. The evaporated ether eluate was purified by silica gel (hexane only) to give compound (Et₃Ge)₂GePh₂ (30.8 mg, 94%). Tetragermane, Et₃Ge(Ph₂Ge)₂GeEt₃, was also detected. 1,1,1,3,3,3-Hexaethyl-2,2-diphenyltrigermane: IR (neat, NaCl) 3067, 3052, 3021, 3009, 2950, 2928, 2905, 2870, 2826, 1562, 1482, 1429, 1378, 1080, 1011, 968, 731, 698, 565 cm⁻¹; ¹H NMR (δ , CDCl₃) 7.46–7.26 (m, 10H), 0.98 (m, 30H); 13 C NMR (δ , CDCl₃) 140.2, 135.5, 127.8, 127.3, 9.9, 6.1. MS m/z (relative intensity): 546 (M⁺, 30), 517 (25), 461 (20), 431 (20), 381 (80), 310 (100), 280 (40), 151 (50), 103 (25). 1,1,1,4,4,4-Hexaethyl-2,2,3,3-tetraphenyltetragermane: ¹H NMR (δ , CDCl₃) 7.42-7.21 (m, 20H), 0.79 (s, 30H). MS m/z (relative intensity): 774 (M⁺, 10), 536 (100), 359 (20), 301 (10), 257 (5), 209 (3), 151 (3). 2,2-Diphenyl-1,1,1,3,3,3-hexa*i*-propyltrigermane: a white solid; 156–177 °C (decomp.); IR (KBr) 3096, 2967, 2942, 2917, 2882, 2962, 1462, 1431, 1221, 1078, 1001, 876, 729, 700, 523 cm⁻¹; ¹H NMR (δ , CDCl₃) 7.64–7.25 (m, 10H), 1.65 (sept,

6H, J = 7.50 Hz), 1.09 (d, 36H, J = 7.50 Hz); ¹³C NMR (δ , CDCl₃) 141.7, 136.3, 136.3, 127.5, 21.1, 17.7. MS *m*/*z* (relative intensity): 630 (M⁺, 30), 587 (90), 545 (60), 427 (70), 385 (75), 352 (100), 301 (20), 203 (50), 161 (30). Found: C, 57.42; H, 8.52%. Calcd for C₃₀H₅₂Ge₃: C, 57.16; H, 8.32%.

4.4. Polymerization of R_2ECl_2 by use of SmI_2

As a representative example, the preparation of poly(diethylgermane) (Et_2Ge)_n was described. A THF solution of SmI₂ (16.0 mL, 1.60 mmol) was dropped to HMPA solution of Et₂GeCl₂ (161 mg, 0.80 mmol). This mixture was stirred for 1 h at reflux temperature. After removing the solvent in vacuo, $(Et_2Ge)_n$ was given by recrystallization from MeOH (26.2 mg, 25%). (Et₂Ge)_n: ¹H NMR (δ , CDCl₃) 1.17 (br, m); IR (cm⁻¹, neat) 2900, 2850, 1450, 1420, 1370, 1220, 1200, 1010, 940, 790, 670. $(Me_2Ge)_n$: ¹H NMR (δ , CDCl₃) 0.20–0.47 (m); IR (cm⁻¹, neat) 2900, 2870, 1400, 1220, 820, 745. $(Me_2Sn)_n$: ¹H NMR (δ , CDCl₃) 1.15–1.36 (m); IR (cm^{-1}, KBr) 2860, 1470, 1380, 990, 720. $(Et_2Sn)_n$: ¹H NMR (δ , CDCl₃) 1.25–1.66 (m); IR (cm⁻¹, KBr) 2960, 1450, 1430, 1190, 940, 670, 570. (Bu₂Sn)_n: ¹H NMR (δ, CDCl_3) 1.49–1.87 (m); IR (cm⁻¹, KBr) 2980, 1635, 1465, 1070, 860, 670, 565. $(\text{Hex}_2\text{Sn})_n$: ¹H NMR (δ , $CDCl_3$) 0.62–1.88 (m); IR (cm⁻¹, KBr) 960, 2400, 1640, 1155, 1100, 950, 680, 600.

Acknowledgements

The author (T.A.) thanks Professor Koichi Narasaka of Tokyo University for valuable discussion of reaction mechanism of SmI_2 and Group 14 element dihalides.

References

- R. West, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 2, Pergamon, Oxford, 1982 (Chapter 9.4).
- [2] H. Sakurai, Synthesis and Application of Organopolysilanes, CMC, Tokyo, 1989.
- [3] R. West, J. Organomet. Chem. 300 (1986) 327, and references cited therein.
- [4] M. Ishikawa, M. Kumada, Adv. Organomet. Chem. 51 (1981) 19, and references cited therein.
- [5] H. Sakurai, Yuki Gosei Kagaku Kyoukaishi 47 (1989) 1051, and references cited therein.
- [6] R.D. Miller, J. Michl, Chem. Rev. 89 (1989) 1359.
- [7] P. Treonas, R. West, J. Polym. Sci. 23 (1985) 1359.
- [8] R.D. Miller, R. Sooriyakumaran, J. Polym. Sci. Polym. Chem. Ed. 25 (1987) 111.
- [9] (a) M. Okano, K. Mochida, Chem. Lett. (1990) 701;
 (b) K. Mochida, H. Chiba, M. Okano, Chem. Lett. (1991) 109;
 (c) K. Mochida, S. Masuda, Y. Harada, Chem. Lett. (1992) 2281;
 (d) K. Mochida, C. Hodota, R. Hata, S. Fukuzumi, Organometallics 12 (1993) 586;

- (e) K. Mochida, K. Kimijima, H. Chiba, M. Wakasa, H. Hayashi, Organometallics 13 (1994) 404;
- (f) K. Mochida, H. Chiba, J. Organomet. Chem. 473 (1994) 45;
- (g) K. Mochida, M. Shimoda, H. Kurousu, A. Kojima, Polyhedron 13 (1994) 3039;
- (h) Y. Yokoyama, M. Hayakawa, T. Azemi, K. Mochida, J. Chem. Soc., Chem. Commun. (1995) 2275;
- (i) K. Mochida, T. Ohkawa, H. Kawata, A. Watanabe, O. Ito, M. Matsuda, Bull. Chem. Soc. Jpn. 69 (1996) 2993;
- (j) K. Mochida, S. Nagano, S. Maeyama, T. Kodaira, A. Watanabe,
- O. Ito, M. Matsuda, Bull. Chem. Soc. Jpn. 70 (1997) 713;
- (k) K. Mochida, S. Nagano, H. Kawata, M. Wakasa, H. Hayashi,
- J. Organomet. Chem. 542 (1997) 75; (1) K. Mochida, S. Nagano, H. Kawata, M. Wakasa, H. Hayashi,
- J. Appl. Organomet. Chem. 11 (1997) 949.
- [10] G.A. Molander, Chem. Rev. 92 (1992) 29, and references cited therein.
- [11] C. Tamborski, F.E. Ford, W.L. Lehn, G.L. Moore, E.J. Soloski, J. Org. Chem. 27 (1962) 619.
- [12] (a) D.D. Davis, C.E. Gray, Organomet. Chem. Rev. A 6 (1970) 283;
- (b) E.J. Bulten, J.G. Noltes, Tetrahedron Lett. (1966) 4389.
- [13] W.K. Zou, N.-L. Yang, Poly. Prepr., Am. Chem. Soc. 33 (1992) 188, and references cited therein.
- [14] H.H. Anderson, J. Am. Chem. Soc. 79 (1957) 326.
- [15] H.H. Anderson, J. Am. Chem. Soc. 75 (1957) 814.

- [16] H.H. Anderson, J. Am. Chem. Soc. 73 (1951) 5800.
- [17] M. Kumada, S. Sakamoto, M. Ishikawa, J. Organomet. Chem. 17 (1974) 1309.
- [18] E.H. Brooks, F. Glockling, J. Chem. Soc. A (1966) 1241.
- [19] E.N. Abel, D.A. Armitage, D.B. Brady, J. Org. Chem. 5 (1966) 130.
- [20] O.H. Johnson, D.M. Harris, J. Am. Chem. Soc. 72 (1950) 5564.
- [21] E.J. Bulten, J.G. Noltes, Tetrahedron Lett. 36 (1966) 4389.
- [22] F.G. Glockling, A. Carrik, J. Chem. Soc. (1963) 1849.
- [23] H. Bauer, K. Burcshkies, Chem. Ber. (1934) 2617.
- [24] C.A. Kraus, S. Sherman, J. Am. Chem. Soc. 55 (1933) 4694.
- [25] A.E. Finholt, Nucl. Sci. Abstr. 6 (1957) 617.
- [26] L. Horviz, E.A. Flood, J. Am. Chem. Soc. 55 (1933) 5055.
- [27] K. Gingold, E.G. Rochow, D. Seyferth, A. Smith, R.C. West, J. Am. Chem. Soc. 74 (1952) 6306.
- [28] U. Schroer, H.-J. Albert, W.P. Neumann, J. Organomet. Chem. 102 (1975) 291.
- [29] O.H. Johnson, H.E. Fritz, J. Org. Chem. 25 (1960) 2262.
- [30] E. Krause, R. Pohland, Chem. Ber. 57 (1924) 532.
- [31] J. Satge, P. Riviere, A. Boy, C.R. Acad. Sci. Ser. C 278 (1974) 1309.
- [32] H.M.J.C. Creemers, J.G. Noltes, J. Organomet. Chem. 7 (1967) 237.
- [33] P. Griard, J.L. Namy, H.B. Kagan, J. Am. Chem. Soc. 102 (1980) 2693.